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Central Limit Theorem for

Parking Models on the Line and Plane

by Howard J. Weiner

University of California at Davis and Stanford University*

1. Introduction. Three models for random parking (= packing) of line

segments on a longer line and correspondingly, squares on a larger
rectangle are given, where for each model, either the Renyi or the
Solomon parking method is used.

The one-dimensional first moment results are given in Solomon (1966), .

(1970), Weiner (1978).

In the alternating car size model, a car of length a 1is placed
uniformly at random along a curb (segment) of length x. It is considered
praked there. A second car, of length b is placed uniformly at fandom
along the curb and parked if and only if it does not overlap the. a-car.
This is the Renyi parking mechanism. In the Solomon parkingfu£§hanimm,

a newly-placed car which overlaps an already-parked car is moved the
shorter distance so as to be immediately adjacent to the overlapped car

on the curb, and is parked there if and only if it does not now overlap
yet another parked car, or the boundary of the segment. I1f a b-gar is not
parked, it is discarded, and another b-car is placed I.1.D. at random as

the other b-car. If it is parked, then an a-car is placed, and the process



continues until no further cars can be parked., If the b-car is not
parked, again it is discarded and another b-car is placed, and again
the process continues until no more cars may be parked. This process
may be similarly defined for the plane for axa and bxb squares,
respectively, with either of th; Renyi and Solomon mechanisms.

The abacus model consists of a rectangle, (k+l)xx, of k horizontal
lines, each one unit apart. The width of the rectangle (the length of
each line) is x. Assume a, b are integers. A line is chosen uniformly
at random from the integers {1,2,...,k}, and centered on this line, an
axa (for definiteness) square is placed. Next, a bxb square is selected
and placed uniformly on a line, and parked if there is no overlap. If
_ there is overlap with the axa parked car on a given line (Renyi model)
or if a car to be placed is vertically adjacent to some portion of a car,
without a line of space between cars, the bxb car is placed I.I.D. as
before until it is parked. Then another axa car is placed I.I.D. and the
process continues until no further cars may be parked. The Solomon model
allows that if two cars overlap on the same line, the one to be placed may
be moved adjacent horizontally (minimsl motion) to the already;parked car
and parked if there is now no overlap with another parked car, if the
boundary is not overlapped, and if at least one line of vertical space
exists between the car and already-parked cars on other lines.

The random car size model to be considered has DXD square cars to
Be parked, eithef.on a rectangie or abacus with the Renyi mechanism, where
D 1is chosen from a distribution F, with density £(zx) > 0, all x > 0.
If a DXD car fits the boundaries of the given rectangle and does not overlap

another already-parked car, {and leaves enough vertical space in the abacus



grid case), it is parked, otherwise it is discarded and the process stops.
If the car is parked, another D is chosen I.I.D. from F and a DXD car
is placed 1.1.D. as the other cars, and if it is not parked as described

above, the process stops.

2, One-Dimensional Models. Define, for a, b < x,

(2.1) Xa(x) (Xb(x)) = the random variable of total number of cars
which may be parked on a curb of length x in the alternating

a and b 1length car Solomon model, starting with an a-car .

(b-car)

il

K, (x)

K (x)

E(X, (X))

m

E(X, (x)).

By considerations as in (Solomon (1966)), it may be shown that

(x B
. - a 1N
(2.2) ’ Loy 1<:;(x;>=(ﬁ2/=§-°

X @

Define

(2.3) L_(s) -=.,J|'0e'sxxa(x) dx

L, (s) = joe’sxxb(x) dx

that for some constants B1» Bys 61, 62 which can be determined, for s ¢ O



(2.4) L (s) ~B,s 2 + 6.5

Lb(s) ~ 328-2 + 528- .

m

(2.5) L (x) = Bx+ 8

1

il

Lb(x) Byx + 62 .
It may be shown that £(x) satisfies the same integral equation. as

K (x)

K(x) = ( Kb(x) >. Hence

(2.6) X (x+a) - 4 (x+a) = (Xb(x)-lb(X))%((_a’o)u(x,xﬂ)]

+ [ (E)=4, (£)) + (X} (x-t)-4, (x-1))]

and a similar equation for Xb'(x+b) - Lb(x+b), ‘where the a, b are inter-
changed, where t is chosen uniformly on [0,x], X;(t), X;(t) are 1.1.D."
as Xa(t), con&itional on t. Squaring both sides of (2.6) and taking

expectatior_.is, with Méz) (x) E 17;()(a (x) -La (x))z,

(2.7) M§2)(x+a) x+Za M}SZ)( ) t 2a x+28 er (2) (t) gt

x

mb(t)mb(x-t) de,

> x+2a J

and



X
n by = 22w P ) + 2 u‘r(,“a(nZ)(t) at + o

»+2b "a

where
(2.8) m_(t) = E(X_(t)-£,(t)),
mb(t) = E(Xb(t) ~£b(t)).
Define
(2.9) L (s) = j e-stéz)(X) dx
a
L (s) = drbe‘S’mg?-)(x) dx .
ra(s) = § e_sxma(tkdx
_ a
rb(s) = Ib e-Sbmb(x) dx

(La(”)
I_i =
Lb(SD

Taking Laplace transforms in (2.7), one obtains

(2.10) L'+ AL = -3

X

~['(),,,a(f;):;:a (x-t) dt,



2as e—as e—2a€l

ze-sarZ 4 (2ae -3ae ) + ( -
b 5 2
s
B =
-bs -2bs -bs -2bs
2e-sbr2 4 (2be " -3be ) (e ; )] .
a 8
. s
Define
(2.11) Kla(x)(Klb(x)) = mean total number of a-length (b-length)
cars which can be parked on [0,x).
Assume a < b.
Clearly
(2.12) Klb(x) < Ka(x),Kb(x) < Kla(x)’

and a similar inequality holds for the respective non-normalized second

moments.,
Hence we seek a solution, either by power series, or Volterra-like

integral equation representation to (2.10) such that

(2.13) lins?(L, (¢) = o, > 0, i=1,2.
si O . *

2
Hence Ma(z)(x),Mb( )(x) are respectively expressible as a sum of three
terms, each of which is increasing in absolute value. By Abelian, Tauberian

theorems (Widder (1946), p. 182 and p. 192),

(2)

oM T (x) Var X_(x) o
(2.14) 1im x 1 ?2) ) = lim x'1< avry o ( 1)
X9 @ \Mb x) X Vm:Xb&J/ 2,



For the abacus, define

(2.15) Ya(k) = total number of alternately-placed a and b segments
on a k-line one-dimensional abacus starting with an a
segment.

Yb(k) is the similar quantity starting with a b segment.

One may conclude by similar considerations es in (Solcmon (1966))

that

B Ya(k)\ _ <ja(k)

S \& v, (x)/ WOV

for large k, where za(k), Lb(k) are linear functions of k.

Denoting
(2.17) Ma(z)(k) . E(Ya(k)*za(k))z
P (o) = BC¥, (04 ()
m (k) = E(Ya(k)—!:a(k))
m () = E(Y (-4, (K)

it follows that with k an integer, k >> a or b.

k

k
(2) 2 2 (2)
(2.18) MY (ta) =2 T o (W)m (k-£) + T I L)
a k L:lmb ™ k £=1Mb
(Z)Hb)-g; Lm (k-£) + 2 ;M(Z)I)
Mb (k Tk L=lma( )ma('_ ) k (-1 2 (£-



Similar considerations to those above yield

Var Y (k)
(2.19) lim k2 a

1o 17 Y =150
-5 Var Yb(k)

For the random car size model in one dimension, define

(2.20) 2(x) = total number of cars of length D, where D has
distribution F, density £, which may be parked

on a curb of length x .

Define
(2.21) L M(x) = E Z(x)
L(s) = j e—st(x) dx
0
o(s) = | e 5% (x) dx.
“0



It may be shown with the prior model that for s} 0, a vy, A

may be computed which satisfy, for s} 0,

- -1
(2.22) L(s) ~vs 2 + As .
Define, for x > 0
(2.23) L(x) = vx + A
m(x) = = M(x) - £(x)

1 () = B@2e)-L00)7

By the methods of earlier paragraphs, it follows that,

for a > 0,
- a a-x -’

(2.24) vy = f{j £ ax | - uP(e) a

0 0

a a-x

+ jof(X) dx jo m(t)m(a-x-t) dt] 3
1f E(Dz) < o, it follows that

(2.25) , lim x P (x) = g > o.

X3



3. Higher Moments.

Let

(3.1) X(x) = total number of unit length segments (cars) which may
be parked on [0,x) in accord with a Renyi model, where each unit segment
is placed uniformly at random and parked only if it does not overlap a
previously parked car. See (Solomon (1966)).

It may be shown (Solomon (1966)) that for x-w

(3.2) EX(x) 2m(x) ~A(x) = cx+c~-1

where c¢ ~ ,748.

Define, for n> 1

(3.3) ™ () = E@x) - 27,

n

and M(l)(x)

n

m(x)

It is known that (Solomon (1966))

(3.4) lim x_lM(z)(x) = 1lim x-1Var X(x) = > 0.
X~»w X w®
Define
(3.5) X'(x), X"(x) to be I.I.D. as X(x).

10
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Theorem 1.

(3.6) 1im x "M% (x) = igﬁli o2"
X — 2n!
o ‘i /2,200 o
x-'ao

Proof. Conditional on the placement of the first unit car on
(t,t+1), x>t + 1>t > 0, considerations of (Weiner (1978)) yield

that for asymptotic results,

(3.7)  EX(x+l) -2 GH1))™ ~ E([X'(£) - £(E)] + [X" (x-t) - £ (x-£)])",

where t 1is chosen uniformly on [0,x]. Expanding the right side by the

binomial expansion and taking expectations for n = 3 yields

t X
(3.8) MG (x41) = 6x7! f M (me-ty + 2 u® ey ae
0 XJpo

and taking Laplace transforms, with

(3.9 L™ () = 8 ) e u ™ (x) ax,
. 0

R (s) = j e 5 (™ (x) ax,
0

it follows that

2078

(3.10) a® eyt + = L3 sy = -6r® (53R ()

11



with solution

(3), .\ _ roe " r P e NT Lo (2), (1)
3.11) .3 ¢s) = [exp(?Js - d%) Js[exﬁC—ZJv — du )} 6R" (V)R (v)] dVJ-
Since for 0 < x < 1,

®  -u
(3.12) exp(?j EG— dé) = -2y - 2 &n s + g(s),
s

where Y = Euler's constant and g(s) = 0 as s — O,

(3.13) 1im s2RP (s) = «
s §0

lim szR(l)(s) = 0,
s § 0

it follows that

o © -y
(3.14% lim SZL(3)(S) = f [exp(}%j EG— du—2i>][6R(2)(v)R(l)(v)]dv = constant.
s 10 0 v -

For n = 4,

(3.15) M®*) (1) = Gxt IXM(Z)(C)M(Z)(x—t) dt + q(x)
0

X R
+ 2 !‘M(l})(t) dt
XUO

vhere
1 7(2), 1 (2)
(3.16) q(x) is of lower order of =x than x j M ()M (x-t) dt
0

by the results for n=1,2,3.

12



(4)(5)

Again taking Laplace transforms, the resulting equation for L

has solution

a7 1%y = {exp(Z.[: e—;i duD]UZ[exp(-zjj e—;u du>I6(R(2)(v))2+t(v)] dv

where t(v) is the Laplace transform of q(x).

Since

(3.18 lim sz(z)(v) = az
vioO

lim vat(v) =0,
vio

if one denotes
’

(3.19)  £(s) = f[exp(-zf 9; du>I6(R(2)(v))2 + t(v)j dv,
S v

it follows by (3.18)ard L'Hospital's rule that

t
(3. 20 lir sf(s) = iii§l G
GES (g) s=0

£y (3.18), (3.20)

(3. 21 lim 55147 (s) = 6a”.

s $ 0
Since M(4)(x) is expressible as a sum of terms each increasing in absolute

value, a Tauberian theoren (Widder (1946)) yields

(3.22) lim x—ZM(A)(x) = 3a%.

X — o™

13



Assume the result of the theorem for r=1,2,.,.,2nth moments by

induction., By the binomial expansion,

X 2n
.23 Py = 205 A D PP e ae
0 £=1
2 er(iml)(t) .
x JO : )

In the first integral on the right side, if M(i)(t) is an even moment,

and the induction hypothesis yields that
(3.24) M om0 ey < 0¥ 2x-0) 2 < 0™,

and when Laplace transforms are taken in (3.19), then a simple computation
by L'Hospital's rule, and an Abelian and Tauberian theorem using (3.20)

yields that
(3.25) uZD 0y < o).

This suffices for the odd moments.
For the (21‘:+2)th moment, the binomial expansion yields

n
xt1) = jx 5 (zgzz)n(2£)(t)m

0 &=1

(2m+2) (20+2-22)

(3.26) M (x-t) dt

X
TuE2™2) 1y ar 4 qm),

2
-
‘0
vhere q(x) is the sum of terms which are multiples of convolutions of odd moments,

and are of lower orcer than the first term on the right side of (3.22) by induction

14



Multiplying by x and taking Laplace transforms one obtains an

equation with solution

.27y L3y [l J’: E;‘-l av) J":[exp(-zj: éu—li av)]
[ 2 (2D+2)R(2£)( )R(2n+2 2£)( ) + t(v)] av

where t(v) is the Laplace transform of q(x).

Let
(3.28) £(s) = F[exp(-zj L jI ATYRIN )R(zn”z 2 w) + t) ] av.

Then by (3.12), L'Hospital's rule, and the induction hypothesis,

(3.29)  lim sPE(x) = lim 5;5543
s 10 s V0 ()
n
S
_1 g (2n+2)AL7£)' e (2n+2-2£)iazn+2-2£ &2V
v 24 2 o+l-L -
£=1 2 2
Hence, by (3.12), (3.29),
2n+2-22
(3.30)  lim sPF20(222) ) 1 3 (2n+2) @pa??  (2n12-20)ta .
s 40 , B =1 2t 14
By a Tauberian theorem,
24 20+2-24
(3.31) lim 5~ (P (2042) 5 1 z 372 (28) e " (2n42-2£) e
) -
‘o (efDyfn 2% 28 oL, otl-k
_ (2n42)1a°"F2

o+l iy



and the theorem is proved.
It is clear by the nature of the computations that the moment result
holds for the three models with either the Renyi or Solomon parking

mechanism,

Theorem 2. For any one-dimensional model considered, for either
the Renyi or Solomon parking mechanisms, where ¢, o« are specific to

each case,

_ 2
(3.22) xl_l:r; E[ex;{-u{%}) Lin E| ex \—u{Xaxf;cx} _ vt

Proof. The limiting moments of Theorem 1 are those of a N(O,dz)

random variable, which uniquely determine the normal law.

4, Two Dimensions.

Let

(4.1) R(x,y) = total number of unit squares which may be parked on an

xxy rectangle in the Renyi model in two dimensions.

Lemma. For x,y2w, all n>1
GG EEEXE) - 2@~ (B (o) P (ay) et 30"
n.2

n%—l

(4.2)(11) EX Y ~£ELGN T o~ o(Gy) x+y))

with Y(y) I.I1.D. as X(y).

16



Proof. For x,y large, all n,

(4.3) E[Y(y) R(x) ~2(x)) + L) (X () - £(y))]".
The independence of X(x),Y(y), the asymptotic expressions

(4.4) (1) 2(x) ~ cx

.2 sl
(4.4)(11) EQ@EN" = E[QXE) 4G +2@1" ~ @N™ ~ Ty
a binomial expansion of (4.3), Theorem 1, an explicit asymptotic
computation of (4.2)(i) for n=1,2, (4.2)(ii) for n=1, and an induction

establish the lemma.

(4.5) lim E{GXP['U< BEa7) LG >]}
Xyyoew - A(R(x,y) -,'/:(x).c(y))2

. #{exp[ _u< R;x;y) -czxy\]} - e-u2/2.

/
Xy 2o Je o xy(x+y)

Proof. For Xx,y»w, n>1,

(4.6)  E®RGE,y) ~2G)LG)N" T B[ () &K Ex) -£E)+ @& EG) ~£GmNI.

17



The lemma immediately yields that for x,y-», and (4.6), that

2n ’
(ca) " [xy (x+y)] 2™n!
2n+1
(4.7) (i) RRGLW LGUGD o, all n > 0.

[xy Gt 9010+ 2

The right sides of (4.7)(1i), (4.7)(ii) are the 2nth and (2n+1)St
moments of a N(0,1) random variable, which determine the distribution,
proving the theorem,

Similar results hold for the Solomon model and other models con-
sidered earlier. A bivariate central limit theorem holds for alternating

squares or rectangles models,

18
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